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THE VITE MODEL: A NEURAL COMMAND CIRCUIT FOR

GENERATING ARM AND ARTICULATOR TRAJECTORIES

Daniel Bullockf and Stephen Grossbergt
Center for Adaptive Systems

Boston University
111 Cummington Street AFOSR-TR- 8 S " 0 2 8

Boston, MA 02215

In Dynamic Patterns in Complex Systems
J.A.S. Kelso, A.J. Mandell, and M.F. Shlesinger (Eds.)

Singapore: World Scientific Publishers, 1988

1. MOVEMENT PLANNING IN MULTI-JOINT SYSTEMS
A A major issue in research on the neural basis of motor control is the nature of

movement planning in systems with many degrees of freedom; for example, an arm
with many controlling muscles acting at several joints, or a speech system with
many articulators. All solutions to the planning problem depend upon assumptions
about both the mechanics of the effectors and the sensory and computational
resources. For example, if an arm has few mechanical degrees of freedom, then
the serial preplanning required to work around the arm's inherent constraints
becomes a salient issue. Alternatively, if the arm has many degrees of freedom, the
computational load imposed by the need for simultaneous coordination becomes
a salient issue. If the arm is part of a body that grows, or if a robotic arm must

remain in service without external maintenance despite unpredictable changes in
its mechanical parameters, then yet another issue comes into view: autonomous
recalibration.

This paper extends earlier results (Bullock and Grossberg, 1986, 1988a) that
are part of a larger program of research on adaptive sensory-motor control in
biological systems (e.g., Grossberg, 1978a, 1982; Grossberg and Kuperstein, 1986). /
In this program, emphasis is on emergent properties of a neural architecture and on
neural network dynamics within systems whose effectors may have many degrees

t Supported in part by the National Science Foundation (NSF IRI-84-17756).
t Supported in part by the Air Force Office of Scientific Research (AFOSR

F49620-86-C-0037) and the National Science Foundation (NSF IRI-84-17756).
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of freedom and whose mechanical parameters may change due to growth, injury,
etc. Our goal is to explain how these systems exhibit such exquisite coordination
in many distinct task environments, and how they maintain such coordination

during all but the most rapid periods of growth.

Simulations of neural networks for self-organization of spatial maps and contin-
uous autonomous calibration were presented in the book by Grossberg and Kuper-
-steit (1986), on &44ptive neuial control of ballistic eye movements. The research
reported in Bullock and Grossberg (1988a) built on the basis developed in that
book, while focusing on automatic trajectory formation and coordination during
variable-speed arm movements. In particular, a real-time neural network model,
called the Vector Integration to Endpoint, or VITE, Model, was developed and
used to quantitatively simulate behavioral and neural data about planned and pas-
sive arm movements. In this paper, we extend our application of the VITE model
to explain additional neurophysiological and kinematic data on arm movements
as well as data about speech articulator movements. In particular, after reviewing
a number of basic properties of the model, we discuss data concerning the role of
the globus pallidus in movement speed control, the equifinality of movement syn-
ergies, rate-dependence of velocity profile asymmetries, and observed variations in
the ratio of maximum to average movement velocities. We also note the inability
of various other models, notably optimization models, to explain these data, and
emphasize the close relationship between a model's computational form and the
possibility of correctly identifying and parsing the functional problems that are
solved by a complex biological system.

2. EMERGENT INVARIANTS OF THE VITE CIRCUIT

In the VITE model for arm movements, kinematic invariants emerge through
network interactions rather than through an explicitly precomputed trajectory.
Parallel motor planning occurs in the form of a Target Position Command, or
TPC, an array that specifies the lengths to which all arm-controlling muscles in-
tend to move, and an independently controlled GO command, which specifies the

movement's overall speed. Automatic processes convert this information into an
arm trajectory with invariant properties, notably properties of synchrony among
muscle synergists. These automatic processes include computation of a Present
Position Command, or PPC, and a Difference Vector, or DV. The DV is the differ-
ence between the TPC and the PPC at any time. The PPC is gradually updated

- ---------- %' * - - ~ .
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Figure 1. (a) A match interface-within the VITE model continuously computes
a difference vector (DV) between a target position command (TPC) and a present
position com3mand (PPO), and adds the difference vector to the present position
command. (b) A GO signal gates execution of a primed movemeit vector and
regulates the rate at which the movement vector updates the present position
command.
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Figure 2. A much higher peak velocity is predicted by the model whenever a
target, T, is activated after the GO signal has already had time to grow. (A): .

The control condition, in which T and the GO signal growth process are activated
synchronously. (B): Same T as in (A), but here T was activated after the GO
signal G(t) had been growing for 300 msec.
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by integrating the DV through time. The time-varying GO signal multiplies the

DV before it is integrated by the PPC. The PPC generates an outflow movement

commiand to its target muscle groups (Figure 1). Opponent interactions regulate

the PPC's to agonist and antagonist muscle groups at each joint.

Iz its simplest form, excluding terms expressing opponent interactions, the

VITE circuit obeys the equations:

Difference Vector
d(1Jiv = a-i+ Ti- A) (1)

and

Present Position Command

d (2
3P, = G[VilV ,  (2)

where [Vi]+ = max(Vi,O). Equations (1) and (2) describe interactions of a generic

component of a target position command (TI,T 2,...,T,,), a difference vector
(V, V2 ,... ,Vn), a present position command (P, P 2 ,..., P.), and a time-varying

velocity command, or GO signal G(t). The difference vector computes a mismatch

between target position and present position, and is used to update present posi-

tion at a variable rate determined by G(t) until the present position matches the
target position. Such a scheme permits multiple muscles, or other motor effectors,

to contract synchronously even though the total amount of contraction, scaled by
Ti(O) - Pi(O), may be different for each effector (Figure 3).

The VITE circuit is not sufficient in itself to accomplish all the tasks required

of a variable-speed variable-load arm movement system. In concert with several

parallel circuits, however, it can generate flexible and adaptive trajectories with-

out suffering from the combinatorial explosions and rigid performance of control

systems that preplan an entire trajectory. In particular, a key difference between

the VITE model and many other model proposals is that its PPC is computed by

outflow or feedforward, signals, rather than by inflow, or feedback, signals from the

muscles. The process of guaranteeing that the PPC outflow movement command

actually moves the arm to a corresponding position are accomplished, in part, by
a separate adaptive linearization network that uses outflow-inflow mismatches to

generate error signals that adaptively alter the gain of the total outflow movement

command (Grossberg and Kuperstein, 1986). The cerebellum has been implicated
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TABLE 1
FOR FIXED DURATION (MT), ERROR
GROWS IN PROPORTION TO DISTANCE
MT DISTANCE ERROR
.56 10 .084
.56 20 .170
.56 40 .349
.56 80 .700

TABLE 2
FOR FIXED ERROR LEVEL, DURATION (MT)
GROWS LINEARLY WITH DISTANCE DOUBLING
ERROR DISTANCE MT
.059 2 .39
.057 4 .49
.058 8 .59
.059 16 .70
.057 32 .80
.059 64 .91

as the locus of adaptive gain change by the manner in which the functional archi-
tecture of this model compares with neural data.

The VITE model generates synchronous movements across synergetic mus-
cles by automatically compensating for the different total contractions that each
muscle group must undergo. The model accomplishes this in a manner that gener-
ates, in quantitative computer simulations, a wide range of properties documented
by experimentalists in psychology and neurophysiology (see Georgopoulos, 1986).
Among these properties are: Woodworth's law (Table 1 and Woodworth,1899); the
speed-accuracy trade-off function known as Fitts' law (Table 2 and Fitts, 1954);
peak acceleration as a function of movement amplitude and duration (Table 3)
and isotonic arm movement properties before and after arm-deafferentation in an-
imals deprived of visual feedback (Bizzi, Accornero, Chapple and Hogan, 1984);
synchronous and compensatory "central error correction" properties of isomet-
ric contractions (Gordon and Ghez, 1987); velocity amplification during target
switching (Figure 2 and Georgopoulos, Kalaska, and Massey, 1981); velocity pro-
file invariance across different movement distances (Freund and Bfidingen, 1978)
and change in profile asymmetry across different movement durations (Figure 3
and Beggs and Howarth, 1972); the automatic compensation for staggered on-
set times of synergetic muscles (Figure 4 and Hollerbach, Moore, and Atkeson,
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speeds shown. (F): The velocity profiles shown in (C), (D), and (E) are not per-
fectly superimposable.
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Figure 4. Simulation results showing automatic VITE circuit compensation for
contraction-onset-time staggering across components of a synergy. Each block (I,
I, IH, IV) shows results for a different value (10, 20, 40, and 80, respectively) of
the GO signal magnitude.



TABLE 3
A COMPARISON OF FOUR MODELS' ABILITIES
TO PREDICT DATA ON PEAK ACCELERATION (P)

DISTANCE MT PEAK P PEAK P SOURCE

200 .554 3970/eeC2  Bizzi et al. (1984)
600 .692 11300/eec2  (experimental data)

200 .554 3760/eeC2  Minimum-jerk model
600 .692 7220 /sec 2  (simulation)

200 .554 3990/eec 2  Minimum-effort model
609 .602 7670/eec 2  (simulation)

200 .554 3940/eec 2  VITE model
600 .692 8540/8ec2  (simulation)

200 .554 3960/ee2  VITE+ model
600 .692 11270/eec 2  (simulation)

1986); vector cell properties in precentral motor cortex (Georgopoulos, Kalaska,

Caminiti, and Massey, 1984; Evarts, 1984); and the inverse relationship between

movement duration and peak velocity (Lestienne, 1979).

3. ACTIVELY GATED LEARNING OF TARGET POSITION AND

PRESENT POSITION

Beyond their service in trajectory formation, TPC, PPC, and DV computa-

tions are needed to actively modulate, or gate, the learning of associative maps

between TPC's of different modalities, such as between the eye-head system and

the hand-arm system (Figure 5). The gating process prevents learning from oc-

curing except when the PPC is close to the TPC; that is, except when the DV is

small. Such gating helps to prevent spurious correlations from being learned, say

between a fixed target position of the hand and all present positions which the
eye assumes while moving to look at the hand. By using such an intermodality

associative map, looking at an object can activate a TPC of the hand-arm system,
as Piaget (1963) noted. Then a VITE circuit can translate this latter TPC into a

synchronous movement trajectory.

Active gating is also needed to regulate learning of present position commands,

notably to prevent such learning from occurring during active arm movements. In %

particular, an auxiliary circuit, called the Passive Update of Position, or PUP,
Model, uses inflow signals to update the PPC during passive arm movements due
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Figure 5. Learning of an intermodal associative transformation between target
position maps is gated by a DV process which matches TPC with PPC to prevent
incorrect associations from forming between eye-head TPC's and hand-arm TPC's.
Learning only occurs when the DV is small.
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Figure 6. A passive update of position (PUP) circuit. An adaptive pathway
PPC -- DVp calibrates PPC-outflow signals in the same scale as inflow signals
during intervals of posture. During passive movements, output from GO equals
the new position caused by any passive movements that may occur due to the

application of external forces.

U Uw* '.' U S - -. * U 3, .. .. - - .. ... . . . . . I



to external forces (Figure 6), but not during active arm movements. Because

the scales of outflow position command signals and inflow position sensing sig-

nals cannot be assumed to be the same, the PUP circuit incorporates a synaptic

modification mechanism for adaptively recalibrating corollary discharges of PPC

outflow signals until they are computed in the same numerical scale as the inflow

signals to which they are compared. Interactions of outflow and inflow signals

are also needed for adaptive linearization of a nonlinear muscle plant (Grossberg

and Kuperstein, 1986) and for automatically or predictively adapting to the iner-

tial properties generated by variable loads and velocities (Bullock and Grossberg,

1988b). The equations of a typical PUP circuit are:

Present Position Command

d
T ,=d = G[V,]+ + G[M,]+  (3)

Outflow-Inflow Match

d A-= -#Mi + Ii - zP, (4)

Adaptive Gain Control

d
= 6G(-e; + [M1J+). (5)

Equation (3) supplements equation (2) with an update signal Gp[Mi]+ that is

turned on only when the passive gating function, or "pauser" signal, Gp becomes

positive in the passive, or postural, state. Function zi in (5) is an long term

memory trace, or associative weight, which adaptively recalibrates the gain of

outflow signals Pi until they are in the same scale as inflow signals -yIi in (4).

In summary, offset of the GO signal within the VITE circuit enables a pauser

signal within the PUP circuit to drive its learning and reset functions. Such pauser-

modulated learning during mismatches has been suggested to occur in several

adaptive sensory-motor control circuits (Grossberg and Kuperstein, 1986).

4. PHYSIOLOGICAL EVIDENCE FOR GO-SIGNAL PATHWAY IN
GLOBUS PALLIDUS

Because the VITE model proposes that trajectories are generated as the arm

tracks the evolving state of a neural circuit, the model can be tested in two ways:



by comparing trajectories of the neural circuit's output stage with actual arm

trajectories, and by checking for the existence of the neural components postulated

in the model.

In Bullock and Grossberg (1988a) we reviewed evidence of Georgopoulos and

his colleagues that cell populations in precentral motor cortex could be analysed as

an in vivo analogue of model DV stage neurons. Additional physiological support

for the VITE model comes from recent experiments involving lesions and electrical

stimulation of the basal ganglia. Data from a set of experiments by Horak and

Anderson (1984a, 1984b) are consistent with the interpretation that the internal

segment of the globus pallidus is an in vivo analogue of the VITE model's GO-

signal pathway.

An in vivo candidate for a GO-signal pathway must pass three tests. First,

stimulation at some site in the proposed pathway muat have an effect on the

rate of muscle contractions. Second, it must have this effect without affecting

the amplitude of the contractions. Thus stimulation should have no effect on

movement accuracy. Third, this rate-modulating effect should be non-specific: it

should affect all muscles that are typically synergists for the movement in question.

The studies conducted by Horak and Anderson (1984a, 1984b) addressed these

issues. Horak and Anderson (1984a) showed that "when neurons in the globus

pallidus were destroyed by injections of kainic acid (KA) during task execution,

contralateral arm movement times (MT) were increased significantly, with little

or no change in reaction times (p.290)." This satisfies the rate criterion. More-

over, the rate of motor recruitment was depressed "in all the contralateral muscles

studied at the wrist, elbow, shoulder, and back, but there were no changes in the ,

sequential activation of the muscles (p.20)." This satisfies the non-specificity crite-

rion. Finally, the authors also noted that "animals displayed no obvious difficulty

in aiming accurately ... they did not miss the 1.5-cm target more often following

KA injections, and there was no noticeable dysmetria around the target (p.300)."

This satisfies the accuracy criterion. P:.

Horak and Anderson (1984b) used an electrical stimulation paradigm instead

of a lesion paradigm. They found that "stimulation in the ventrolateral internal

segment of the globus pallidus (GP) or in the ansa lenticularis reduced movement

time, whereas stimulation at many sites in the external pallidal segment (GP,),

dorsal (GP), and putamen increased movement times for the contralateral arm

% %
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(p.305)." Once again, these effects were non-specific: "no somatotopic effects of

stimulation were evident. If stimulation at a site produced slowing, it produced

a depression of activity in all the muscles studied. Even stimulus currents as low

as 25 jA affected proximal as well as distal muscles, flexor as well as extensor

muscles, and early- as well as late-occurring activity (p.309)."

In the VITE model, activation of the GO-signal pathway produces movement

only if instatement of a TPC different from the current PPC leads to the compu-

tation of a non-zero DV. In agreement with this property, Horak and Anderson

(1984b) observed that "stimulation at sites that speeded movements did not in-

duce involuntary muscle activation in resting animals nor did it change background

EMG activity prior to self-generated activity during task performance (p.313)." In

Bullock and Grossberg (1988a) we noted that 'very rapid freezing can be achieved

by completely inhibiting the GO signal at any point in the trajectory". This prop-

erty of the model has also been shown to be a property of the GP system. In

particular, Horak and Anderson reported that "stimulation with 50 or 100 /A at

... sites ventral and medial to typical GP neuronal activity completely and im-

mediately halted the monkey's performance in the task (p.315)." Taken together,

their experiments led Horak and Anderson (1984b) to conclude that "the basal

ganglia ... determine the speed of the movement" (p.321).

5. ENSURING EQUIFINALITY IN SPACE AND TIME

The striking correspondence between the experimental results of Georgopou-

los et al. and of Horak and Anderson and the theoretical predictions of the VITE

model regarding separate DV and GO-signal processes is important because it

supports the hypothesis that motor systems, like sensory systems, implement a

factorization of pattern and energy (Grossberg, 1970, 1978a, 1982). In the mo- S
tor system, this factorization means that a movement's speed ("energy") can be

scaled up or down over a wide range without disrupting the movement's direc-

tion or spatial endpoint ("pattern"). Moreover, by using a GO-signal that grows

gradually during the movement time (as exemplified in Figure 2), all synergists

will complete their contractions at approximately the same time even if movement

onset times of different synergists are staggered by a large amount (Figure 4).

These properties of the model, together with the strong evidence for separate DV

and GO-signal pathways in vivo, provide a basis for understanding how primates

can achieve space-time equifinality-all synergists reaching their length targets

'U ?.



at equal times-yet retain separate control of rate and position. Note that rate-

control models relying on static stiffness adjustments (e.g., Cooke, 1980) lack the -b

critical temporal-equifinality property.

Several other important automatic compensatory properties emerge from in-

teractions between the DV and GO processes. In Bullock and Grossberg (1988a),
we noted that in addition to compensating for muscles that begin to contract at

staggered onset times, the VITE circuit automatically compensates for changes

of target position during the movement time. In particular, Figure 2 shows that

the model generates the amplification of peak velocity that occurs during target-

switching experiments (Georgopoulos, et al., 1981).

Such an amplification of velocity facilitates reaching the target after an incor-

rect initial TPC is replaced by an updated TPC. This speed-up occurs "on-the-fly."

It is not preprogrammed, but is rather an automatic emergent property of VITE

circuit interactions.

The VITE circuit can accomplish such compensations because changes in the

TPC during target switching, or differences in onset times of contraction across

muscles in a synergy, or updating of a PPC via inflow signals during an externally

caused movement-all these circuit perturbations flow through the system via dy-

namic real-time computations. For example, during a target-switching experiment,

first there is quick reset of the TPC, and then more gradual compensatory change

of the DV and the DV-GO signal product that controls movement rate.

Similar catch-up phenomena are known to exist in the domain of speech motor

control. Abbs, Gracco, and Cole (1984) have argued that such speech compen-

sations cannot be explained by more common compensatory mechanisms such as

stretch reflexes. Though a full treatment of how the VITE circuit contributes to

an explanation of these data will not be given here, other data suggestive of a

VITE circuit role in speech are treated in Sections 6 and 7.

6. RATE-DEPENDENT ASYMMETRY IN VELOCITY PROFILES

A distinctive prediction of the VITE model is that velocity profiles will gen-

erally be asymmetrical about the movement-time midpoint, and that their degree

and direction of asymmetry will vary as a function of movement time (MT). Such

a dependence of asymmetry on MT has been known empirically since the work

of Beggs and Howarth (1972), whose results were modelled via the series of sim-
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ulations shown in Figure 3C, D, and E. Recently, Zelaznik, Schmidt, and Gielen
(1986) have shown that within a faster range of speeds (MT < 250 msec.), the di-

rection of asymmetry can reverse from that observed in the medium-to-slow speed

range studied by Beggs and Howarth. Table 4 shows results from a series of VITE

model simulations that replicate the results reported in Zelaznik et al. (1986).
The T-SR values (time symmetry ratios) were calculated as in Figure 3: the time

required to move half the total distance was divided by the time required to move

the entire distance. The D-SR values (distance symmetry ratios) were calculated

as in Zelaznik et al. (1986); namely, the distance traversed at the time of the arm's

peak velocity was divided by the total movement distance.

Model parameter settings were the same as those used in Bullock and Gross-
berg (1988a). To match the Zelaznik et al. measurement conditions as closely

as possible, measurements of duration and distance in the simulation runs be-

gan when velocity first exceeded a 4 cm/sec threshold and ended when velocity

fell below a 4 cm/sec threshold (see the C2 columns). As can be seen in Table

4, model-generated D-SR values for movement times between 250 and 125 msec.
exhibit the direction of asymmetry (all D-SRs > .5) observed by Zelaznik et al.
Moreover, their range (.54 to .58) closely matches the observed range (.54 to .60).
Finally, the ordering of the model-generated values is also consistent with the over-

all pattern established by the observed values: "the distance traversed at the time
of maximum velocity was inversely related to MT" (Zelaznik et al., 1986, p.361).

Several additional remarks should be made about the T-SR and D-SR values
shown in Table 4. First, these values are invariant under changes of TPC and

initial DV. That is, they vary with movement rate, but not movement amplitude.

Second, both these statistics are stable despite small shifts in the velocity threshold
used to begin and end measurements of a given movement (compare the i1 and S

62 columns). Third, it can be seen from the table that the T-SR statistic is more

sensitive to change in VITE velocity profiles than the D-SR statistic, which even
shows a slight violation of monotonicity. Because Zelaznik et al. also appeared

to have difficulty proving replicability of the small D-SR differences they initially
observed (compare their Experiment 1 and Experiment 2 results), we suggest

that future experiments concerned with rate-dependent asymmetry use the T-SR

statistic.

Two final points concern the generality and origin of rate-dependent asym-

. .~ ~ * 1 q~* ~ W - -



TABLE 4
KINEMATIC VARIABLES AS A FUNCTION OF THE GO-SIGNAL
SCALAR (G.) AND THE VELOCITY THRESHOLD (e,)

Distance Duration V,,.Z/V.,g T-SR D-SR
Go Vmaz I 62 el C2 eI C2 Ci C2 e1 C2

10 38.2 19.9 19.6 .96 .84 1.84 1.63 .44 .45 .50 .50
20 52.4 20.0 19.8 .71 .63 1.86 1.67 .45 .46 .49 .49
40 72.8 20.2 20.1 .50 .47 1.80 1.70 .46 .47 .51 .51
80 102.5 20.6 20.6 .36 .34 1.79 1.69 .50 .50 .53 .53

160 145.7 21.5 21.5 .27 .26 1.79 1.73 .51 .51 .54 .54
320 207.7 22.9 22.9 .20 .20 1.81 1.77 .55 .54 .57 .57
640 295.8 24.9 24.8 .16 .15 1.84 1.73 .55 .55 .58 .58

1280 417.9 27.2 27.2 .12 .12 1.85 1.77 .56 .57 .58 .58

Note: Mean VIAZ/V... values are 1.82 and 1.71 in columns el and C2, respectively.

el = 1 unit/sec. C2 = 4 units/sec. TPC = 20 for all simulations.

metries. Although the VITE model was developed for arm movements, there
are many reasons to believe that it is applicable to speech motor control. Like
reaching movements, speech movements are subject to continuous rate variations,
and higher speaking rates lead to poorer accuracy. Recently it has been shown
that speech movements also exhibit unimodal velocity profiles that are comparable
to those shown in Figure 3 for arm movements and Ostry, Cooke, and Munhall
(1987) have reported strong "evidence for ... a rate dependent asymmetry in the

velocity of orofacial movement, under a variety of conditions" (p.44). Moreover,
because the asymmetry was true of both speech and non-speech movements (i.e.
was not task-specific) the authors concluded that "the most promising alternatives
to account for the asymmetry of form seem to be articulator biomechanics and/or
neural control" (p.45) rather than speech-specific task demands. Because the rate-
dependent asymmetry is common to several biomechanically dissimilar systems, we
are inclined to place more weight on an explanation in terms of a neural controller,
viz., the VITE circuit. The asymmetric velocity profiles of the VITE model coexist
with the model's asymmetric DV profiles, as equation (2) shows. The asymmetric
DV profiles are compared in Bullock and Grossberg (1988a) with neurophysiolog-
ical evidence from the Georgopoulos laboratory demonstrating asymmetric vector
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cell profiles in precentral motor cortex.

7. A COMMON KINEMATIC INVARIANT IN SPEECH AND ARM
MOVEMENTS: Vti.z/V.,g

One kinematic measure that is now frequently used in the experimental lit-
erature on arm and speech articulator movements (Hasan, 1986; Munhall, Ostry
and Parush, 1985; Ostry and Cooke, 1987; Ostry et al., 1987; Soechting, 1984) is
the ratio of a movement's maximum velocity (V,.) to its average velocity (V,,,).

This ratio has been found to be virtually constant across a wide range of movement
speeds and distances in both the speech and reaching domains. Moreover, the ab-
solute values of the ratios found for speech and reaching movements-about 1.7
and 1.9, respectively-are close enough to invite speculation that this kinematic
invariant might be a "signature" of a generative mechanism common to the two

domains.

The VITE model predicts a mean value of 1.95 (range 2.18 to 1.86, with a .001
unit/sec velocity threshold; predicted ranges and means for two other thresholds

are shown in Table 4), which stands exactly at the midpoint of the empirical range
reported by Hasan (1986) for arm movements. Other models of arm trajectory
formation predict similar values: Hogan's (1984) minimum jerk model predicts

1.88, whereas Hasan's minimum effort model predicts 1.97. Why are both empir-

ical and predicted values for discrete arm movements (1.9) larger than commonly

observed values for speech movements (1.7)?

A simple hypothesis is that the discrepancy is, at least partly, due to a trun-

cation effect. Note that if you truncate the tails of a bell-shaped velocity profile,
and if you measure distance and duration relative to the truncated profile, then

V,,. remains the same while V.,, increases, relative to values calculated from
a full (un-truncated) profile. Thus the ratio Vm.GZ/V..g varies inversely with the

degree to which the velocity profile's edges get clipped. This is illustrated in Table

4 where the 2 column represents a more severe truncation than the e1 column.

We consider two kinds of evidence that truncation does contribute to the arm
vs. speech discrepancy. First, Soechting (1984) reported a speech-like value of
Vax /Vagg (1.75) in an arm experiment. However his experimental procedures can

explain this anomalous value as an example of a truncation artifact. As he noted,

"Movement time T was defined as the interval between the time at which wrist
velocity began to exceed 10% of its maximal value and the time of contact with
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the target." This meant that movements had already achieved velocities of from
6.5 to 16.5 cm/sec before measurement began. By omitting these small velocities - ,
from the average, the average velocity was spuriously inflated. (In addition to
causing an underestimation of V,,AZ/V,.g, this severe truncation led Soechting
to mistakenly conclude that velocity profiles from fast and slow movements were

superimposable after time and velocity normalization-contrary to the findings of
Beggs and Howarth [1972], Moore and Marteniuk [1986], and Zelaznik et al. [1986]
regarding rate-dependent asymmetry.)

Second, Munhall et al. (1985) have shown that the ratio varies across speech
conditions. By examining their tables of mean values as a function of speech
condition, it is possible to test the truncation hypothesis. However, in this case we
are speaking not of a truncation artifact introduced by experimental procedures,
but of a "real" truncation caused by switching to a new TPC before the prior DV
has been completely zeroed. We believe that such non-artifactual truncations are
the rule in medium- and fast-paced continuous speech.

Were such normative truncation the source of the lower V,.Z/V..,, values, then
speech Vm../V... values should be higher (and closer to discrete arm movement
values) when the subject speaks more slowly, when the subject places greater
stress on a syllable, and when the consonantal target position must be briefly held

(as in a fricative). Consistent with this expectation, inspection of the Munhall
et al. (1985, Table 2, p.464) data reveals the highest mean VWnG:/V,, value,
1.83, for the slow, stressed, fricative condition, and the lowest mean value, 1.66,
for the fast, unstressed, stop consonant condition (compare Table 4 simulation
means). A more recent experiment (Ostry et al., 1987), though conducted for other
reasons, provided a more direct test of the truncation hypothesis by examining
the V,../V.,. ratio for both continuous and discrete elbow, tongue, and jaw
movements. The data show that for both tongue and jaw lowering, and for elbow
movements, "the ratio was greater in the discrete than in the continuous condition

(p < .001)" (p.41).

In summary, the small but reliable discrepancy between V,,IZ/V,,, values

observed in studies of discrete reaching vs. continuous speech can be plausibly
explained as a truncation effect. Thus this discrepancy should not block further
pursuit of the hypothesis that a common mechanism explains traectory formation
in both systems (see also Cohen, Grossberg, and Stork, 1988).



E

8. KINEMATIC PROPERTIES AND COMPETING MODELS OF

TRAJECTORY FORMATION

The abundance of information on kinematic properties of planned point-to-
point arm movements has prompted the formulation of a number of alternative

models of trajectory formation. Many of these models-such as the minimum jerk

model (Hogan, 1984) or the minimum effort model (Hasan, 1986)-have attempted

to rationalize kinematic properties as consequences of optimizations. Thus Hogan

proposed that the bell-like shape of observed velocity profiles indicates an opti-

mization for smooth motions, whereas Hasan proposed that the same shapes re-

flect an optimization that minimizes the "psychological effort" required to produce

movement.

Two types of problems-empirical and conceptual-attend such optimization

models. The empirical problem is exemplified by the relatively poor predictions

made by these models in Table 3, just one illustration that such models often

fail quickly when asked to accomodate kinematic properties, such as acceleratory

extrema, which are not tightly linked to the optimized variables. Other failures in-

clude their inability to explain such phenomena as the rate-dependent asymmetry

of velocity profiles (Section 6) and the anomalous amplification of peak velocity
during target switching (Section 5).

Yet another difficulty derives from the observed variability in VmZa/V..g. As

Ostry et al. (1987) noted, the VP../V..g values found for continuous move-

ment were close to those predicted by a minimum-energy model (Nelson, 1983)

whereas the values found for discrete movement were close to those predicted by a

minimum-jerk model (Hogan, 1984). Rather than attempting to rationalize these

outcomes, which are contradictory within any single optimization framework, we

interpret such multiple failures as strong evidence that optimization models do

not incorporate the rate-limiting designs that generate the parametric structure

of arm movement data.

The conceptual problem (see also Grossberg, 1978b, 1982; Jacob, 1977; Par-
tridge, 1982) with most optimization models is their lack of constituents that bear

any resemblance to the constituents of real biological systems. We believe it is

this conceptual problem that leads to the empirical problem: If the constituents

are not correct, then the many emergent properties of the ensemble other than the
one explicitly designed in (the one optimized for) will also typically be wrong.
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In contrast to these optimization models, the VITE model of trajectory for-
mation assumes that the modern neural system for limb movements includes the

minimal anatomy that affords coordinated use of an array of muscles to smoothly

cancel the distance between a current and desired motor state, and to maintain

synchrony of activity across the array despite large differences in overall movement

rate and even larger changes in the contraction rates of individual synergists. To

emphasize this basic design is not to deny that evolutionary selection pressures

implicitly identified in various optimization models may also have been operative.
For example, selection favoring smoother movements may have tuned parameters

such as the size and rate of change of the GO-signal during the movement interval.

9. CONCLUSION

The VITE model represents a simple but robust solution to the problem of

generating flexible and synchronous goal-oriented movement commands capable
of compensating for variations in initial position, desired target position, desired

movement speed, and onset-asynchrony. Computer simulation studie" of the cir-
cuit's emergent properties demonstrate that it provides a compact quantitative

explanation of a large behavioral database. Brain analogues of two key circuit
constituents have been identified, each on the basis of multiple functional criteria.

The VITE model is but one of several circuits (witness the PUP circuit of

Section 3) that are being developed to explain how humans and related mammals

achieve dexterous control of goal-oriented limbs. These circuits provide a quan-
titative instantiation of the functional problems and design principles that have

been identified through analysis of the large interdisciplinary data base concerning

eye, arm, and speech articulator movements. The manner in which these different

circuits globally parse this problem space is no less important than the properties
4 the individual circuits themselves, since if one tries to solve the wrong set of

problems one can never understand in a principled way the dynamics of a complex

biological system.
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